述评。

脑血流自动调节: 从理论到临床转化 及检查流程的标准化

■ 韩珂1. 胡汉华2, 3, 4

脑血流自动调节; 机制; 评估方法; 标准 [DOI] 10.3969/j.issn.1673-5765.2019.03.002

脑血流 (cerebral blood flow, CBF) 存 在于人脑中一个约600 km长, 具备协同作用且 相互连接的血管网内。在此血管网系统中, 脑 动脉、小动脉和毛细血管为大脑提供O、能量 和营养, 而脑静脉将CO。和代谢废物从大脑中 排出。脑几乎没有能量储备,必须通过血流持 续供应O。和能量。

脑血管的适应性调节机制有助于保证 脑在各种条件下均可获得充足且适当的血液 供应。包括:平均动脉血压 (arterial blood pressure, ABP) 在一定范围内变动时, 保持脑 灌注稳定能力的CA; 脑内动脉PaCO₂/pH改 变时,保持脑灌注稳定的血流动力学反应的脑 血管运动(舒缩)反应性(cerebral vasomotor reactivity, VMR)。以上2种调节机制针对的 是静息状态的脑血流调控。此外,细胞活性增 加时, CBF通常也会增加, 这是通过神经血管 耦联 (neurovascular coupling, NVC) 调整 脑灌注以适应大脑活动增强时细胞功能增加 的高代谢需求,又被称为功能性充血,目前是 一个比较活跃的研究领域。

上述3种脑血管的适应性调节机制均通 过神经血管单元 (neurovascular unit, NVU) 起作用。传统NVU位于脑循环的末段,由小动 脉、微血管、壁细胞如血管平滑肌细胞和周细 胞、内皮细胞、星形胶质细胞、神经元及小静脉 构成。上述结构不但在神经血管耦联中各司其 职(如壁细胞具有收缩性,能够直接调控血管

的直径和血流),而且与动脉、小动脉和脑微循 环毛细血管段的神经元之间相互作用;同时通 过介导脑血管扩张和收缩的细胞信号通路进 而调控CBF使其增加和减少[1-3]。在许多神经系 统疾病的早期阶段, 当CBF调节的细胞和分子 机制异常, CBF、O。输送和神经元活动不匹配, 出现神经血管功能连接中断, 神经血管将失耦 联[4-5]。近年来, NVU的概念逐渐扩展为更大范 围的"血管神经网络"[6-8], 包括在生理和病理 条件下维持脑血流所需的全部细胞及结构,除 了传统的毛细血管内皮细胞、周细胞和被星形 细胞端足包裹的基底层、内皮细胞、神经元和 星形胶质细胞,还包括平滑肌细胞、非毛细血 管内皮细胞、血管周围神经、成纤维细胞、平滑 肌祖细胞和免疫系统细胞及侧支血管、血管周 围神经和静脉。正是依赖于这个血管神经网络 的精细和复杂的协同合作, 才实现了脑血流的 精确调控,支持了大脑正常的稳态和功能。

TCD可以同步动态监测颅内血管的血流 速度 (cerebral blood flow velocity, CBFV)。 假设颅内血管的直径不变,血流速度可以代表 脑血流。通过TCD监测颅内血管的血流速度, 得以实现实时同步监测生理或病理条件下由 外部或者内部刺激诱发的NVU的变化和反应, 进而分析这些机制调控下的脑血流改变。

由于人体研究更适合阐述CA的机制,本文 结合团队多年的临床研究积累的经验,主要关 注的是人体CA的生理和临床转化应用,包括

作者单位

518107 深圳 中山大学附属第七医院 (深圳) 神经内科

²台北医学大学医学院脑 血管病治疗与研究中心 ³台北医学大学双和医院

神经内科

4台北医学大学医学院临 床医学研究所

通信作者

胡汉华

hanhwa@hotmail.com

CA检查流程的的标准化。

1 脑血流自动调节的生理

CA的概念由Lassen等在1959年首次提出, 是当ABP在60~150 mm Hg之间波动时, CBF 保持稳定的能力。CA保护脑,避免低血压导致 的脑灌注不足,或高血压导致的脑充血、过度 灌注[9]。

CA的基础是通过小动脉和毛细血管括 约肌调节脑血管的阻力 (cerebrovascular resistance, CVR)。关于机制,主要是4种学 说,包括肌源性、神经源性、内皮性和代谢反应 机制。肌源性张力是压力增高时小动脉及其平 滑肌收缩,压力降低时舒张[10]。跨壁压力快速 变化 (ΔP=10~25 mm Hg/s) 将触发血管直 径的即时变化[11]。跨壁刺激开始和血管机械应 答开始之间的潜伏期通常<250 ms[12]。代谢机 制发生在较小的血管,局部微环境的变化会影 响血管舒缩反应,例如,低于自动调节下限的 低血压导致了脑血流降低,进而导致CO。蓄积, 由于调节存在则小血管扩张, PaCO。每增加 1 mm Hg, 脑血流增加近4%。相反, 高于CA上 限的高血压导致高灌注和CO。减少,相应地血 管收缩, PaCO。每降低1 mm Hg, 脑血流减少 4%^[13]。该反应已经被归因于脑血管平滑肌对H⁺ 的反应[14]。神经源性机制也被称为"神经血管 耦联",包括对中、小直径血管的控制。神经元 分泌具有血管活性的神经递质,如血管扩张剂 乙酰唑胺、NO及血管收缩剂5-羟色胺和神经肽 Y^[15]。通过红外视频显微技术观察大鼠的神经 元之间和邻近的微血管,发现微血管对神经元 间去极化的反应是收缩[16]。内皮性机制是指内 皮细胞产生了多种信号,如内皮细胞分泌血管 扩张剂NO等,以及血管收缩剂如内皮素-1、血 栓素A2等,影响正常和疾病状态下脑血管的 张力[17]。

CA分为2种类型: 静态的自动调节和动 态的自动调节。sCA是调整脑血流适应在数分

钟或者数小时内缓慢/渐进改变的血压,是在 TCD技术应用临床之前,因无法实现同步,故 记录的是滞后的数据。TCD问世后,由于具有 高时间分辨率,可以实现即时同步,故dCA可以 在数秒钟内对血压的即时变化做出反应,允许 持续测量CA,实现对血流动力学的逐波分析。

CA及脑血流与昼夜、运动、强迫呼吸(伴 随着动脉血PaCO。的变化)、体位和功能活动 均有关,饮食、月经周期的激素改变、麻醉剂也 是影响因素。所以,在队列研究(在相同条件下 评估每例患者)或者个体前、后比较的纵断面 研究中, 进行CA实验时, 必须要考虑这些波动 因素的影响,以便实现标准化操作,提高该检 查的可重复性 及多中心之间比较结果。

2 脑血流自动调节的检查方法

动物研究发表始于20世纪60年代。与爬行 动物比较,人类更易受直立重力影响,因此,关 于CA的机制可能不同。而且随着TCD的引入, 直接无创地研究人体受试者已经成为可能。CA 的检查方法分类见表1。

sCA是通过药物干预实现脑灌注(血)压 的变化。

dCA包括外界诱发血压或者自发血压波 动2种类型。其中外界诱发的dCA是通过刺激-反应的方法,分析血压快速下降之后,脑血流 速度的动态变化(直到脑血流速度再次达到稳 定)。简而言之,是给予无创的即时或者周期 性的刺激。方法主要如下: ①下肢袖带释放实 验,用血压袖带阻断双下肢近端(大干收缩期 血压) 2~3 min, 然后快速放气[18]。由于诱发了 收缩期血压快速下降(大约20 mm Hg),正常 情况下, 脑血流速度将每秒上升达20%。下肢 袖带释放实验禁忌证是下肢血管病或者下肢骨 折[19]。该刺激不能代表日常生活中的生理状况 (如体位变化或者药物刺激)。下肢袖带释放实 验是在仰卧位进行的,因此,卧床的患者也适 用。②颈动脉压迫实验或者短暂充血反应实验,

指在尽量靠近颈部的位置压迫颈总动脉(注意: 压迫实验有效的标准是颈总动脉血流速度至 少下降30%~50%), 3 s后再解除压迫^[20]。由于 压迫引起了小动脉的代偿性舒张, 诱发了短暂 的充血反应 (transient hyperemic response, THR), 计算公式为: THR系数 (transient hyperemic response ratio, THRR) =充血时 血流速度/基线血流速度,其中充血时血流速 度=压迫解除后2个收缩期血流速度的均值; 基 线血流速度=压迫前5个收缩期血流速度的均 值。正常值是1.105~1.29。压颈动作有产生栓 子的风险,且患者不舒服,限制了该方法的重 复应用。③瓦氏动作 (valsalva maneuver, VM) 持续用力吹气,维持在30~40 mm Hg,持续 15 s能引起血压变化及相应的CA反应^[21]。但是, 胸膜腔内压的增高也会导致颅内压增高,进一 步降低灌注压,及存在呼气末PaCO。增高的可 能,是影响CA的干扰因素。④规律的缓慢呼吸 是另一个有效的方法,但同样的,也存在增加 潮气量及诱发测试期间低碳酸血症的风险[22]。 ⑤ "坐-立位实验" 模拟生理状态下的血压下降, 受试者坐位持续5 min (下肢抬高90°),转为 立位持续1 min, 5 min后再重复一遍坐位和立 位[23]。该方法与下肢袖带释放实验的结果类似, 已被证实是有效的[24]。⑥其他诱发血压波动的 方法,如周期性蹲坐、被动抬头直立倾斜实验、 等长握力练习(需要患者配合)及冷压实验,其 中一个较复杂的技术是下肢负压实验,将双下 肢置于呈正弦波的负压舱(桶)中,实现血压 的周期性变化,该负压导致下肢血流的重新分 布和血压下降[25]。但这个过程可使肥胖者不适, 也不太可能被实现,更被批评可能导致损伤CA 本身。

与外界诱发的CA方法不同, 自发的dCA是 记录血压和脑血流的自发的波动。该方法始于 20世纪90年代,由于不需要受试者配合任何诱 发动作, 简单易行, 在临床应用广泛, 目前是CA 的主流检查方法[26-28]。但由于之后处理的分析 方法不同,对检查数据设置的要求也不同,而 目数据的分析方法较复杂。

3 脑血流自动调节的分析方法

基于血流、血压呈线性关系的假 设,分析数据的常用指标如下:脑血管阻力 (cerebrovascular resistance, CVR) =均值BP/ 均值CBF (单位: mm Hg·mL⁻¹·min⁻¹) [29]。在 TCD的研究中, CVR指数 (CVR index, CVRi) =均值BP/均值CBFV (单位: mm Hg·cm⁻¹·s⁻¹)。 搏动指数 (pulsatility index, PI) = (收缩期峰 值血流速度-舒张期末血流速度)/均值血流 速度。PI值是量化微小血管收缩、舒张阻力的常 用工具,它与稳定条件下的CVR的意义不同,在 描述CA的特征时PI似乎没那么有用, 因为条件 改变时, PI并不总是以与CVR相同的方式做出

表1 CA的检查方法

	表: 5年10日								
	分类	检查方法分类							
神经血管网络调控	脑血流自动调节 (CA)	静态 (sCA)		缓慢连续静脉输注去氧 肾上腺素/硝普钠					
		动态 (dCA)	诱发dCA	下肢袖带释放实验					
				颈动脉压迫实验 (短暂					
				充血反应实验)					
				Valsalva动作					
				周期性呼吸实验					
				体位改变实验					
				周期性蹲坐实验					
				被动抬头直立倾斜实验 (直立倾斜床实验)					
				等长握力实验					
				下肢负压实验					
				冰水刺激实验					
				其他					
			自发dCA	无任何外部的诱发刺激					
				(平卧静息状态)					
	脑血管运动反应性 (VMR)	药物诱发血管 舒缩实验		静脉注射乙酰唑胺实验					
				静脉注射上精氨酸					
		CO ₂ 浓度改变诱发 血管舒缩实验	高浓度CO2	CO2吸入实验					
			低浓度CO。	屏气实验/呼吸暂停实验 过度通气(深/快速呼吸)					
	-h-/7 -h		瓜水及002	PCA PCA					
	神经血管耦联 (NVC)	监测血管的供血区		MCA					
				ACA					
			单项感官刺激	视觉/听觉/其他知觉					
		刺激类型		感觉/运动刺激+联想测试					

反应^[30]。另一个量化CA的方式是当脑血流接近 0时的BP值即为临界关闭压 (critical closing pressure, CrCP, 单位: mm Hg)。

更复杂的分析dCA特性的是时域 分析和频域分析[26-28, 31-35]。自动调节指数 (autoregulation index, ARI) 可用于时域分 析[31]。应用该指数的技术背景是假设脑血流 速度被动随血压下降,利用计算机构建了ABP 骤降后, CBFV变化的10个 (0~9) 标准应答模 型曲线。如果被评估的曲线符合这个模型且 ARI=0,则代表无CA, ARI=9,则代表CA最 佳,故ARI 0~ARI 9,代表对血压下降的调 节能力越来越强。这种分析方法最初针对的是 下肢袖带释放实验,也被广泛用于其他检查方 法[24]。而自动调节斜率指数 (autoregulatory slope index)作为ARI的替代,评估CA响应 斜率的陡度,显示出与ARI良好的相关性。恢 复率 (the rate of recovery, ROR) =[(CVR 指数的差值/时间差)/平均ABP的差值]×(脑 血流速度/s),是通过分析血压下降刺激脑血 流速度的恢复时间,评估CA的有效性。

另一个在时域内评估CA的分析方法 是血压和脑血流速度之间的相关系数 (the correlation coefficient, Mx),或者皮尔森相 关系数[32]。每5 s的平均值为一个单位, 再以每 3 min为单位(共36个单位时间)计算均值,然 后将所得数值进行灌注压与平均脑血流速度的 相关性分析,这个相关系数被定义为平均速度 指数, 若为0或负值, 提示CBFV和CPP之间无 关或负相关,即血压与脑血流速度之间存在时 间差,并非完全同步变化,故CA未受损,调控 正常; 若为正值, 提示CBFV和CPP之间正相关, 即完全同步变化, 故CA受损。Mx是CA随时间 变化的一个新的持续监测的指标。与传递函数 分析不同的是, 当线性关系不存在时Mx仍然 有效。

传递函数分析(transfer function analysis, TFA) 是评估频域的方法, 用于分析

逐波的血压和脑血流之间的关系[26-28, 30, 35]。简 言之,通过分析输入信号血压和输出信号脑血 流之间的即时变化,量化CA^[30]。该分析方法的 参数是3个:增益(或振幅),相位差,一致性函 数(简称一致性)。有效的CA使增益衰减,因此, 低增益代表CA存在, 而高增益提示CA的有效 性减弱。CA存在时血压和血流之间的相位差 是正值,当CA能力下降时,则伴随着相位差消 失,转化为时域,相位差为0(血压和血流振荡 之间无时间延迟) 代表CA消失[30,36]。一致性描 述的是血压和血流之间的线性关系,一致性 高提示呈线性关系,而一致性接近0提示无线 性关系。不同频段内各个参数的值和意义不同, 需要进行区分, 低频振荡 (也称为M波) 可能 反映了交感神经张力的变化,这是由平均ABP 的自发变化引起的, 而极低频振荡(也称为B波) 似乎反映了颅内压的自发振荡,并由其他机制 触发。CA的分析方法见表2。

自发的动态脑血流自动调节标准化方案的 探讨

针对诸多的CA的检查方法,对应的CA的 分析方法也诸多,但至今无公认的金标准。CA 的概念代表了BP (刺激或输入信号)和CBF (反应或输出信号)之间的动态关系,假设CA 被简化为一个线性控制系统,由于临床广泛采 用的检查方法是自发动态的CBFV与BP波动法, 那么基于BP自发波动的TFA是目前研究中常用 的分析方法。其理论基础是TFA可获取频率依 赖的增益和相位评估,而且还能根据一致性函 数评估这些数据的可靠性, 所以《传递函数分 析dCA:源于国际CA研究网络的白皮书》推荐 了TFA的参数和设置,旨在完善和标准化dCA, 使检测结果更稳定、更可靠[35]。本团队自1998 年首次发表应用频域方法分析自发dCA的研究 以来,在临床研究中积累了关于仪器设备的选 择、操作步骤、检查参数、报告内容及临床解读 的丰富的实践经验[26]。

表2 CA的分析方法

	表2 CABJ为机力法							
	分析方法分类	1	信号分类	具体分析方法分类	分析方法的具体应用或参数			
CA	频域分析	i域分析 线性平稳信号		传递函数分析 (TFA)	增益 (gain)、相位 (phase)、一致性函数 (coherence)			
	时域分析		非线性 非平稳信号	希尔伯特-黄变换 (HHT) 注: HHT由经验模态分解 (EMD) 和希尔伯特变换 (HT) 构成	多模态压力-血流分析 (MMPF)			
		时		自适应滤波分析	结果可转换至频域分析进而获得TFA相同的参数:增益、相位			
		域 瞬	非线性	基于Volterra级数的非线性模型				
		态	平稳信号	主要动态模式的非线性分析				
		信	线性 平稳信号	自动调节指数 (ARI)	ARI 0~9标准应答模型			
		号		ARX模型 (ARX)	结果可转换至频域分析进而获得TFA相同的参数:增益、相位			
				相关系数分析 (Mx)	平均CBFV与BP之间的相关系数			
				线性回归 (Linear Regression)	临界关闭压 (CrCP):血流接近0时的血压值			
		时		脑血管阻力 (CVR)	血压均值 (BP mean) /脑血流均值 (CBF mean)			
		域稳态信号	线性 平稳信号	脑血管阻力指数 (CVRi)	血压均值 (BP mean) /脑血流速度均值 (CBFV mean)			
				搏动指数 (PI)	收缩期与舒张期脑血流速度的差值 (CBFVsys—CBFVdias) /脑血流速度均值 (CBFV mean)			
				恢复率 (RoR)	[脑血管阻力指数的差值与时间差的比值 (Δ CVRi/ Δ T) /血压差 (Δ BP)]× (CBFV/s)			

致谢: 此表经刘嘉研究员(中国科学院深圳先进技术研究院)、罗孟宗教授(台湾中央大学生物科技与工程中心) 审阅

4.1 仪器设备 以TFA分析方法为例, 临床应用 中的常规配置: ①TCD仪。是无创的检查设备。 配备2.0/1.6 MHz监护探头及监护头架,或者 选配4.0/8.0 MHz探头及其配套的监护头架 (目前深圳市德力凯医疗设备股份有限公司可 定制)。需要配备实时的血流监护软件。②无创 性连续逐波血压监测仪。此仪器是无创的检查 设备。配备手指动脉容积夹(即指套,此为消耗 品),容积夹按照尺寸分大、中、小规格,分别匹 配不同粗细的手指。配备校正血压用的袖带血 压。③呼气末CO,分析仪(或模块)。此仪器是 无创的检查设备。常采用红外线法或者质谱仪 法测定呼气末CO₂。配备规格相同的鼻导管(一 次性的消耗品)。④连续心电监测仪。此仪器是 无创的检查设备。选配。目前大多数仪器通过 CBFV的波形可以间接算出心率, 但一些专业 软件需要配备连续心电监测。⑤数据整合设备。 选配。是整合以上多个数据达到同步输入、输 出的设备(如多功能数据采集卡)。⑥选配其他 设备。根据临床研究的需要, 监测参数不同, 选 择有创或者无创的检查设备,如近红外光谱仪 (near-infrared spectroscopy, NIRS), 用于

无创测量局部脑氧饱和度; 脑组织血氧监测仪, 用于无创测量局部组织氧分压; 脑血氧和血流 监测一体机,属新型设备,是以色列Ornim医 疗有限公司的CerOx (将近红外与局部低功 率超声结合,配无创探头),颅内压监测仪,配 颅内导管,用于有创测量颅内压;脑血流和无 创连续血压监测一体机,是新型设备,深圳市 德力凯医疗设备股份有限公司的EMS-9D Pro (实现了脑血流及无创连续逐波血压监测的同 步输入输出,配无创自动监护探头、压力感应 指套等)。⑦专业分析软件。包括离线分析和在 线即时分析软件。

4.2 操作步骤

①对检测环境及受试者的一般要求。检测 需要在有空调的环境中, 理想温度是22~24℃。 如果检测静息状态下自发的CA(基线),应该 尽量避免干扰,如视觉或者听觉刺激(包括人 员进出的干扰)。由于昼夜节律的变化,推荐在 相似的时间段检测,以保证可重复性。

受试者检查前至少4 h避免饮用含咖啡因 的饮料、巧克力和难消化食物,还须在检查前 至少12 h避免运动和摄入酒精。保健品和各种

药物也能影响分析结果(如TFA),需要根据 实验目的酌情考虑。受试者应休息15 min (确 保血压、心率和心搏量稳定)后,取仰卧位(需 同时记录头的位置)或者坐位(需双下肢不交 叉) 检测。

②选择脑血流速度信号。记录MCA血流速 度之前, 先戴监护头架, 固定好探头, 将TCD 机器调为双通道单深度模式,监测双侧MCA, 深度分别为50~65 mm, 取样容积10~15 mm³, 增益的调整以血流速度频谱的包络线平滑, 无 毛刺样改变为宜(在临床工作中发现, DWL) TCD机器增益调整为38或者52时, 其频谱包络 的平滑效果最佳; 而德力凯TCD机器对增益无 特殊要求)。

双侧颞窗穿透不良者,可尝试监测双侧 PCA, 深度分别为60~70 mm, 取样容积 10~15 mm³, 鉴于CA评估对脑血流速度包络 线平滑度的要求比较高,在MCA获取失败的 条件下, PCA的失败率也较高。本团队尝试应 用4~8 MHz探头及头架(自行研制) 监测双侧 ICA颅外段评估CA,与同侧MCA比较,也是一 个有效的选择, 尽管ICA和MCA的调节结果存 在差异[37]。

③选择血压信号。记录连续逐波血压之前, 需要高度校准器对戴指套侧的手指与心脏的高 度差进行校准,避免手的位置的高低对准确性 的影响。需要同时用袖带血压校正逐波血压的 准确性。后期的数据分析需要保持血压信号的 连续性, 故建议校正完成后, 关闭血压的自动 校正功能。

④选择呼气末CO,信号。记录CO,波形之 前, 先将鼻导管的鼻子端放到鼻孔下边, 另一 端的采样管经过滤器连接到CO。仪器的进气口。 CO。波形的高度代表CO。浓度。由于吸气中无 CO₂, 呼气中出现CO₂, 正常情况下, 吸气期间 CO2波形是逐渐下降,呼气期间逐渐上升。波 形出现的频率是呼吸频率。监测CO。信号,用 于判断自主呼吸,以便调整呼吸维持稳定,避

免过度通气或者通气不足。因CO。会显著影响 CBF, 故应记录和重视任何明显的PaCO。波动 (如>1 mm Hg)。

⑤调试不同设备的信号使之同步化。 是否 同步化对CA参数的差异性很大(尤其对相位 的干扰),所以要特别注意不同设备的信号是 否存在延迟输出的问题。

⑥记录时间。因TFA分析要求至少是连续 5 min的BP和CBFV数据, 所以至少连续监测 5 min, 要求是在生理条件稳定, BP和CBFV的 自发波动不间断的数据。由于Finapres的BP设 备存在 "physiocals" 功能, 会造成BP缺失的 短片段,建议BP校正后关掉该功能,从而避免 影响数据分析。

实践中,鉴于临床采集数据的可用性,建 议连续监测10 min。本团队比较了5 min和 10 min的数据分析结果,虽然两者的有效性是 一致的[38], 但考虑到多中心的可比性, 建议还是 标准化分析5 min数据。

4.3 参数的预设 仅以TFA分析方法为例,该 参数预设为TFA分析前的数据准备。

①采样频率。推荐BP和CBFV连续信号进 行模拟-数字转换时最小采样频率为50 Hz (即 ≥50 Hz)。实践中,考虑到设备及数据存储的可 行性,通常推荐设置较Nyquist频率高4~5倍。

②数据的格式。BP和CBFV信号的记录采 用2种格式,原始波形和(每搏心跳时的)平均 BP和平均CBFV。2种格式的相关性很好,但相 比较而言, 原始波形更易被伪迹等干扰所影响, 故推荐采用每搏心跳数据,即将BP舒张值的 时间作为每个心动周期的起点、终点,根据波 形曲线下面积计算每个心动周期的平均BP和 CBFV.

③检查数据是否可用。分析BP和CBFV数 据之前,首先检查信号是否存在伪迹,如伪迹 连续存在超过3个心动周期,可以由线性插值 插补,不会影响分析结果。如果伪迹等干扰持 续时间过长则应删除该段数据。但关于通过线

性插值的插补而删除的异位搏动的最大个数, 一般认为0.03~0.07 Hz频率范围插补的缺失 <10 s不会影响分析结果, 而0.07~0.5 Hz频 率范围每50 s内缺失达5 s,则分析结果不可靠, 该数据应弃之。

④缺失数据的处理。通常采用插值法,包 括线性插值和仿样插值,推荐采用仿样插值 (即三阶多项式)。

⑤为了推进标准化,推荐如下设置,最小 的再采样频率4 Hz, 去趋势(无), 正态化(无), 滤波(无),防漏窗(Hanning取样窗),窗长 (≥100 s), 窗的叠加度 (50%), 平滑化[用系数为 (1/4, 1/2, 1/4) 三角形平均窗], 一致性临界值 (95%CI, 基于自由度或者Monte Carlo模拟)。

备注:关于设置④~⑤建议感兴趣者查阅 英文原文或中文译文[35,39]。

⑥参数单位的选择。一致性函数无单位。 相位的单位用角度 (α_0) 或者弧度 (α_{rad}) ,两者 可以直接换算[公式 $\alpha_0 = (\alpha_{rad}/\pi) \times 180$]。增益 的单位用绝对值 (cm·s⁻¹·mm Hg⁻¹) 或百分比 $(\% \cdot \text{mm Hg}^{-1})$

4.4 报告 以TFA分析方法的结果为例。

4.4.1 报告内容 需要描述特定频带范围内的 一致性、增益、相位的均值。具体包括3部分:① 频率的范围。频率的范围为0.02~0.5 Hz, 最 常用的频带分段如下: 极低频0.02~0.07 Hz, 低频0.07~0.2 Hz, 高频0.2~0.5 Hz。②每 个频率范围内的参数。包括一致性、增益、相 位(即时间差)。③对应参数的平均值及标准差。 报告内容是低、中、高频段分别对应的一致性、 5 脑血流自动调节的应用 增益、相位的均值和标准差。

备注:如果可能,还需要提供每个频段内 BP和CBFV的功率谱密度,以及BP和CBFV的 均值和自身的变异度。由于低于0.02 Hz频率 的BP和CBFV的相位和增益不可信, 所以频率 的下限为0.02 Hz。如果数据的频谱分辨率高 且数据长超过5 min, 可以尝试分析频率低于 相关细节。

4.4.2 报告解读 结合了近年临床研究的实践。

参考值: 一致性(极低频: 0.51; 低频: 0.62; 高频: 0.57); 增益(单位: cm·s⁻¹·mm Hg⁻¹, 极低频: 0.68, 低频: 0.96, 高频: 1.20); 相位 (单位:角度,极低频:53.0,低频:25.4,高频 9.38)(备注:考虑到白皮书中的数据未统一标 准校正, 故此参考值中的相位值偏低。)

一致性,正常情况下在0~1之间变化,表 示CBFV随BP变化而变化,通常应>0.4。如果 太小, 提示CBFV随BP变化呈非线性关系, 可 靠性差,则该数据不适于TFA分析。如果等于1, 提示CBFV随BP变化而完全同步变化,正常情 况下呈线性关系的CBFV随BP的变化是存在时 间差的,虽然貌似可靠性好,但是代表调节消 失。通常在高频段内一致性高,接近1;低频段 内一致性相对低,故认为CA主要在低频段内发 挥作用。

相位差,通常在0°~90°变化,表示调节 能力从差到好,通常在高频段内几乎为0°,表 示CBFV随BP同步变化,提示CA差;低频段内 是60°左右,提示CA好。

增益,通常>1或者<1之间变化。通常在高 频段内>1,表示BP无衰减的传递到CBFV,提 示CA差; 低频段内<1, 表示BP传递到CBFV有 衰减,提示CA好。

备注: 在输入、输出数据呈线性关系的前 提下,"相位"参数较其他TFA的参数更稳定。

已知某些临床情况,包括脑外伤、蛛网膜 下腔出血、急性脑出血、急性呼吸窘迫综合征、 重症监护室的败血症和相关谵妄患者、重度急 性脑炎、缺血性卒中(包括ICA狭窄, MCA狭 窄等血管狭窄)、糖尿病、血管迷走神经性晕厥、 神经退行性病变(如痴呆)、严重的高血压、进 行外科手术的患者等,尤其是在重症监护条件 0.02 Hz (如0.008 Hz) 的数据, 但需附加说明 下, CA对于维持稳定的脑灌注非常重要。本文 针对临床的关注度,重点介绍个体化最佳血压 /灌注压的调控、急性缺血性卒中、AD的CA的 应用现状。

5.1 个体化平均动脉压的调控 目前CA监测的 最新应用是,通过监测CA,估算每个个体的最 佳平均ABP和最佳脑灌注压,并明确床边CA 监测的可行性。Lucia Rivera-Lara等[40]的综 述总结了成人和儿童的观察性研究是通过个 体的CA曲线,估算不同人群的最佳脑灌注压 和最佳平均ABP, 且评估高于或者低于最佳脑 灌注压或者平均ABP与预后之间的关系。研究 表明,脑灌注压或者平均ABP与CA监测确定 的最佳值有显著差异者, 更易预后不良, 而且 在床边连续监测CA是可行的,并且有望被直接 用于调控急性期的血压,具有潜在的指导个体 化血压管理的应用价值。

有4项研究调查了成人的急性脑外伤,以 自动调节监测的最佳ABP为基线,评估其高血 压和(或)低血压与功能预后的相关性。其中 一项收集了327例患者的用"压力反应指数"评 估最佳脑灌注压的研究发现, 过低的脑灌注压 增加了致命性结局的发生率, 而过高的脑灌注 压与严重残疾比例增加相关[41]。与该研究结果 相似,一项用"低频CA指数"评估最佳脑灌注 压的55例患者的队列研究发现,实际的脑灌注 压接近低频自动调节指数(基于最佳脑灌注压) 与生存率增加相关,而多变量模型发现,实际 的脑灌注压和最佳脑灌注压之间的平均绝对 差值是死亡率增加的独立相关因素[42]。另一项 对18例患者的队列研究发现,用"压力反应指 数"估算最佳脑灌注压,实际脑灌注压和最佳 脑灌注压之间存在较大差异 (>10 mm Hg) 的 患者, 更易预后不良[43]。与上述研究相反, 一 项用新参数"低频样本压力反应指数"的研究, 则未发现最佳脑灌注压与死亡或重度残障之 间的相关性,但该指数本身对结局和最佳脑灌 注压的估算的预测价值也很低[44]。

针对脑出血(n=25)和动脉瘤性蛛网膜下

腔出血 (n=38) 的研究分别显示, 用 "压力反应 指数"评估最佳脑灌注压和预后的关系,未发 现两者之间有显著的相关性[45-46]。而对121例心 脏手术患者的观察性研究发现,基于"脑血氧 定量指数"预估的低血压,与脑细胞损伤及神 经胶质纤维酸性蛋白增高(血清中脑损伤的特 征性的生物标记物) 相关[47]。

儿童的观察性研究是通过床边监测CA评 估最佳平均ABP[48-50]。28例新生儿缺氧缺血性 脑病的研究用"血红蛋白容积指数"评估低于 最佳平均ABP的血压及与21~32个月后存在运 动和认知障碍即预后不良之间的相关性,发现 低温治疗复温期间血压严重低于最佳平均动 脉血压的新生儿的预后差[50]。另一项纳入30例 6个月~16岁的创伤性脑外伤儿童的队列研究 也报告了类似的结果, 脑灌注压与最佳脑灌注 压之间的差异中负偏差的持续时间和波幅的大 小与预后不良 (GCS评分≥4分) 是相关的^[48]。

值得注意的是,不同人群和可能存在并发 症的患者,估算的最佳平均ABP或者最佳脑灌 注压的平均值或者中位数是不同的。例如,脑 出血患者的平均最佳脑灌注压 (85 mm Hg) 比脑外伤患者 (75 mm Hg) 高, 动脉瘤性蛛 网膜下腔出血伴血管痉挛者其最佳脑灌注压 (98 mm Hg) 比无血管痉挛者 (78 mm Hg) 高。 与最佳脑灌注压相比, 脑外伤的血压过高或过 低均与严重残疾有关,而在接受心脏手术的患 者中,仅仅动脉压过低与脑细胞损伤有关,考 虑在严重的急性脑损伤、颅内压增高和脑顺应 性差的患者中,可能部分是由于脑灌注压过大, 静水压力增高导致脑水肿恶化,从而使颅内压 进一步增高[41]。

目前关于指南中推荐的血压管理的目标值 是非个体化的,遗留了许多疑问,如长期高血 压者的最佳血压是多少? 相对于无脑损伤的患 者,急性脑损伤和颅内压增高患者的脑灌注压 的下、上限有不同吗? 上述研究通过CA的调控 实现的个体化的最佳血压,由于其为脑及其他

器官提供了最佳的灌注,故与临床结局预后改 善密切相关,说明了实现个体化血压管理的重 要性。利用CA实现评估最佳脑灌注压或者血 压是一个值得重点关注的领域。目前存在的问 题是该项新技术缺乏随机对照实验数据来确 定以最佳血压或最佳脑灌注压为基础进行治 疗的临床疗效。未来,有望以自动调节为导向, 通过前瞻性、大规模、随机对照临床研究评估, 实现个体化血压的调控。

5.2 缺血性卒中 另一个重点关注的领域是急 性缺血性卒中。Marcel J.H. Aries等[29]发表 的系统综述, 总结了23项研究 (其中16项针对 急性卒中, 7项针对慢性卒中)。讨论了3个问 题: ①CA受损了? 为什么? CA受损似乎与缺血 后血管内皮和平滑肌的功能丧失相关。②受损 的范围多大?不仅较大的梗死,而且腔隙性梗 死患者的CA也受损。另一方面, CA受损发生 在双侧半球,不局限于症状侧。但是,由于缺乏 纵断面研究, 腔隙性梗死的CA受损是由慢性 小血管病引起的,还是由急性梗死引起的,目前 尚不清楚。一项小型研究证实了急性缺血性卒 中者双侧大脑半球的CA受损,与皮层下卒中相 比,皮层卒中的CA受损略明显,而不是显著差 异。③时间进程是什么? 随访调查研究显示, 最 初几天内CA的受损恶化,较大卒中患者2周后 仍持续存在,而小卒中患者,2周后受损会恢复。 据报道,恢复期会持续3个月。慢性卒中患者, 因为恶性高血压患者的CA受损, 卒中后慢性期 CA持续受损时,其动脉高压可能扮演了一个角 色。而在微血管病的患者中,也发现了CA受损, 并且与慢性白质病变的严重程度显著相关。除了 慢性高血压的CA受损, CA的相位的界值移向 血压较高侧。这似乎是有意义的,因为大脑可 以更好地被保护去预防高血压。但是,在全身 低血压的情况下,大脑可能更易受到低灌注的 影响。最近,一些研究者假设,对于老年高血 压患者, 药物降低血压可能改变CA, 从而导致 认知功能损伤。

CA也已经被用于评估ICA狭窄血流动力 学改变的严重度和缺血性卒中的风险。侧支循 环是重要因素之一,但是,通过小动脉舒张降 低脑灌注的完整的CA的代偿可能也扮演了一 个角色[51-52]。研究发现,一般说来,与对侧比较, 患侧动脉至少达到70%的狭窄,才能引起狭窄 侧血管的CA降低。尽管对此存在争议,但与CA 未受影响侧比较,调节受损侧的卒中风险高,受 损的CA本身代表了一个独立的危险因素^[53]。颈 动脉手术中评估CA, 发现术后CA功能的整体 (部分) 有恢复[54-56]。关于MCA重度狭窄者的研 究显示, CA受损出现在狭窄侧。双侧ICA重度 狭窄/闭塞者其CA也下降。对比而言, PCA中 度狭窄者,未发现CA的显著改变,潜在的原因 可能是狭窄程度低。

5.3 痴呆 这是一个新兴的领域,由于在AD小 鼠模型中, CA受损严重, 因此假设受损的CA在 AD的病程进展中起作用(如未保护脑免受血 压波动的影响, 因此导致了短暂的低灌注或者 高灌注)。但人类研究的初步数据未证实CA对 AD的影响^[57]。然而, 脑小血管病占全世界痴呆 症的40%左右,包括AD,而且最近的流行病学、 临床、病理学和实验研究累积的数据表明AD 与早期神经血管功能障碍是有关的,有待于进 一步的研究来阐明AD与CA之间的联系[58-66]。

总之,结合临床研究的实践,在白皮书的 基础上,细化了CA的标准化方案,包括检查方 法(推荐:记录自发的动态的血压、血流及呼气 末CO₂的数据)和分析方法(推荐:TFA分析), 为临床科研及进一步开展临床日常诊疗工作提 供了可能, 助力于相关医院转化应用参考。期 待未来更多的中心借助CA的研究解决更多的 临床问题, 如对血压/灌注压的个体化调控, 对 痴呆的早期筛查和干预等热点问题。

参考文献

[1] ATTWELL D, BUCHAN A M, CHARPAK S, et al. Glial and neuronal control of brain blood flow[J]. Nature, 2010, 468 (7321): 232-243.

- [2] HALL CN, REYNELL C, GESSLEIN B, et al. Capillary pericytes regulate cerebral blood flow in health and disease[J]. Nature, 2014, 508 (7494): 55-60.
- [3] MISHRA A, REYNOLDS JP, CHEN Y, et al. Astrocytes mediate neurovascular signaling to capillary pericytes but not to arterioles[J]. Nat Neurosci, 2016, 19 (12): 1619-1627.
- KISLER K, NELSON A R, MONTAGNE A, et al. [4] Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease[J]. Nat Rev Neurosci, 2017, 18 (7): 419-434.
- [5] HILL R A, TONG L, YUAN P, et al. Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes[J]. Neuron, 2015, 87 (1): 95-110.
- [6] ZHANG JH, BADAUT J, TANG J, et al. The vascular neural network--a new paradigm in stroke pathophysiology[J]. Nat Rev Neuro, 2012, 8 (12): 711-716.
- [7] JOUTEL A, FARACI F M. Cerebral small vessel disease: insights and opportunities from mouse models of collagen IV-related small vessel disease and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy[J]. Stroke, 2014, 45 (4): 1215-1221.
- [8] FILOSA J A, MORRISON H W, IDDINGS J A, et al. Beyond neurovascular coupling, role of astrocytes in the regulation of vascular tone[J/ OL]. Neuroscience, 2016, 323: 96-109. https://doi. org/10.1016/j.neuroscience.2015.03.064.
- [9] CZOSNYKA M, SMIELEWSKI P, CZOSNYKA Z, et al. Continuous assessment of cerebral autoregulation: clinical and laboratory experience[J/OL]. Acta Neurochir Suppl, 2003, 86: 581-585. https://link.springer.com/chapt er/10.1007/978-3-7091-0651-8 118.
- [10] IBRIM J, MCGEE A, GRAHAM D, et al. Sexspecific differences in cerebral arterial myogenic tone in hypertensive and normotensive rats[J]. Am J Physiol Heart Circ Physiol, 2006, 290 (3): H1081-H1089.
- [11] OSOL G, HALPERN W. Myogenic properties of cerebral blood vessels from normotensive and hypertensive rats[J/OL]. Am J Physiol, 1985, 249 (5 Pt 2): H914-H921. https://doi.org/10.1152/ajpheart. 1985.249.5.H914.
- [12] HALPERN W, OSOL G, COY G S. Mechanical behavior of pressurized in vitro prearteriolar vessels determined with a video system[J]. Ann Biomed Eng,

- 1984, 12 (5): 463-479.
- [13] BUDOHOSKI K P, CZOSNYKA M, DE RIVA N, et al. The relationship between cerebral blood flow autoregulation and cerebrovascular pressure reactivity after traumatic brain injury[J]. Neurosurgery, 2012, 71 (3): 652-660; discussion 660-661.
- [14] YOSHIHARA M, BANDOH K, MARMAROU A. Cerebrovascular carbon dioxide reactivity assessed by intracranial pressure dynamics in severely head injured patients[J]. J Neurosurg, 1995, 82 (3): 386-393.
- [15] HAMEL E. Perivascular nerves and the regulation of cerebrovascular tone[J]. J Appl Physiol (1985), 2006, 100 (3): 1059-1064.
- [16] CAULI B, TONG X K, RANCILLAC A, et al. Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways[J]. J Neurosci, 2004, 24 (41): 8940-8949.
- [17] GOLDING EM, MARRELLI SP, YOU J, et al. Endothelium-derived hyperpolarizing factor in the brain: a new regulator of cerebral blood flow?[J]. Stroke, 2002, 33 (3): 661-663.
- [18] AASLID R, LINDEGAARD K F, SORTEBERG W, et al. Cerebral autoregulation dynamics in humans[J]. Stroke, 1989, 20 (1): 45-52.
- [19] AASLID R. Cerebral autoregulation and vasomotor reactivity[J/OL]. Front Neurol Neurosci, 2006, 21: 216-228. https://doi.org/10.1159/000092434.
- [20] GILLER C A. A bedside test for cerebral autoregulation using transcranial Doppler ultrasound[J]. Acta Neurochir (Wien), 1991, 108 (1-2): 7-14.
- [21] TIECKS F P, DOUVILLE C, BYRD S, et al. Evaluation of impaired cerebral autoregulation by the Valsalva maneuver[J]. Stroke, 1996, 27 (7): 1177-1782.
- [22] LANG E W, DIEHL R R, MEHDORN H M. Cerebral autoregulation testing after aneurysmal subarachnoid hemorrhage: the phase relationship between arterial blood pressure and cerebral blood flow velocity[J]. Crit Care Med, 2001, 29 (1): 158-
- [23] LIPSITZ L A, MUKAI S, HAMNER J, et al. Dynamic regulation of middle cerebral artery blood flow velocity in aging and hypertension[J]. Stroke, 2000, 31 (8): 1897-1903.
- [24] SOROND F A, SERRADOR J M, JONES R N, et al. The sit-to-stand technique for the measurement of dynamic cerebral autoregulation[J]. Ultrasound Med Biol, 2009, 35 (1): 21-29.

- [25] BIRCH A A. NEIL-DWYER G. MURRILLS A J. The repeatability of cerebral autoregulation assessment using sinusoidal lower body negative pressure[J]. Physiol Meas, 2002, 23 (1): 73-83.
- [26] KUO TB, CHERN CM, SHENG WY, et al. Frequency domain analysis of cerebral blood flow velocity and its correlation with arterial blood pressure[J]. J Cereb Blood Flow Metab, 1998, 18 (3): 311-318.
- [27] HU HH, KUO TB, WONG WJ, et al. Transfer function analysis of cerebral hemodynamics in patients with carotid stenosis[J]. J Cereb Blood Flow Metab, 1999, 19 (4): 460-465.
- [28] ZHANG R, ZUCKERMAN JH, GILLER CA, et al. Transfer function analysis of dynamic cerebral autoregulation in humans[J]. Am J Physiol, 1998, 274 (1 Pt 2): H233-H241.
- [29] ARIES M J, ELTING J W, DE KEYSER J, et al. Cerebral autoregulation in stroke: a review of transcranial Doppler studies[J]. Stroke, 2010, 41 (11): 2697-2704.
- [30] VAN BEEK AH, CLAASSEN JA, RIKKERT M G, et al. Cerebral autoregulation: an overview of current concepts and methodology with special focus on the elderly[J]. J Cereb Blood Flow Metab, 2008, 28 (6): 1071-1085.
- [31] TIECKS F P, LAM A M, AASLID R, et al. Comparison of static and dynamic cerebral autoregulation measurements[J]. Stroke, 1995, 26 (6): 1014-1019.
- [32] CZOSNYKA M, SMIELEWSKI P, KIRKPATRICK P, et al. Monitoring of cerebral autoregulation in head-injured patients[J]. Stroke, 1996, 27 (10): 1829-1834.
- [33] LOMT, HUK, LIUY, et al. Multimodal pressure flow analysis: application of hilbert huang transform in cerebral blood flow regulation[J/OL]. EURASIP J Adv Signal Process, 2008, 2008; 785243. https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC2518653/.
- [34] PLACEK MM, WACHEL P, ISKANDER DR, et al. Applying time-frequency analysis to assess cerebral autoregulation during hypercapnia[J/OL]. PLoS One, 2017, 12 (7): e0181851. https://dx.doi. org/10.1371%2Fjournal.pone.0181851.
- [35] CLASSEN J A, MEEL-VAN DEN ABEELEN A S, et al. International Cerebral Autoregulation Research Network (CARNet) . Transfer function analysis of dynamic cerebral autoregulation; a white paper from the International Cerebral Autoregulation Research Network[J]. J Cereb Blood Flow Metab, 2016, 36 (4): 665-680.

- [36] DIEH R R. LINDEN D. LÜCKE D. et al. Phase relationship between cerebral blood flow velocity and blood pressure. A clinical test of autoregulation[J]. Stroke, 1995, 26 (10): 1801-1804.
- [37] CHI N F, KU H L, WANG C Y, et al. Dynamic cerebral autoregulation assessment using extracranial internal carotid artery Doppler ultrasonography[J]. Ultrasound Med Biol, 2017, 43 (7): 1307-1313.
- [38] CHINF, WANGCY, CHANL, et al. Comparing different recording lengths of dynamic cerebral autoregulation: 5 versus 10 minutes[J/OL]. Biomed Res Int, 2018, 2018; 7803426. https://doi. org/10.1155/2018/7803426.
- [39] 韩珂, 王政严, 纪乃方, 等. 传递函数分析动态脑血 流自动调节:源于国际脑血流自动调节研究网络的 白皮书[J]. 中国卒中杂志, 2018, 13 (10): 1072-1085.
- [40] RIVERA-LARA L, ZORRILLA-VACA A, GEOCADIN R G, et al. Cerebral autoregulationoriented therapy at the bedside: a comprehensive review[J]. Anesthesiology, 2017, 126 (6): 1187-1199
- [41] ARIES M J, CZOSNYKA M, BUDOHOSKI K P, et al. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury[J]. Crit Care Med, 2012, 40 (8): 2456-2463.
- [42] DEPREITERE B, GÜIZA F, VAN DEN BERGHE G, et al. Pressure autoregulation monitoring and cerebral perfusion pressure target recommendation in patients with severe traumatic brain injury based on minute-by-minute monitoring data[J]. J Neurosurg, 2014, 120 (6): 1451-1457.
- [43] DIAS C, SILVA M J, PEREIRA E, et al. Optimal cerebral perfusion pressure management at bedside: a single-center pilot study[J]. Neurocrit Care, 2015, 23 (1): 92-102.
- [44] LANG E W, KASPROWICZ M, SMIELEWSKI P, et al. Short pressure reactivity index versus long pressure reactivity index in the management of traumatic brain injury[J]. J Neurosurg, 2015, 122 (3): 588-594.
- [45] DIEDLER J, SANTOS E, POLI S, et al. Optimal cerebral perfusion pressure in patients with intracerebral hemorrhage: an observational case series[J]. Crit Care, 2014, 18 (2): R51.
- [46] BIJLENGA P, CZOSNYKA M, BUDOHOSKI K P, et al. "Optimal cerebral perfusion pressure" in poor grade patients after subarachnoid hemorrhage[J]. Neurocrit Care, 2010, 13 (1): 17-23.
- [47] HORI D, ONO M, RAPPOLD T E, et al. Hypotension after cardiac operations based on autoregulation monitoring leads to brain cellular

- injury[J]. Ann Thorac Surg, 2015, 100 (2): 487-493.
- [48] LEWIS PM, CZOSNYKA M, CARTER BG, et al. Cerebrovascular pressure reactivity in children with traumatic brain injury[J]. Pediatr Crit Care Med, 2015, 16 (8): 739-749.
- [49] LEE J K, WILLIAMS M, JENNINGS J M, et al. Cerebrovascular autoregulation in pediatric moyamoya disease[J]. Paediatr Anaesth, 2013, 23 (6): 547-556.
- [50] BURTON V J, GERNER G, CRISTOFALO E, et al. A pilot cohort study of cerebral autoregulation and 2-year neurodevelopmental outcomes in neonates with hypoxic-ischemic encephalopathy who received therapeutic hypothermia[J/OL]. BMC Neurol, 2015, 15: 209. https://dx.doi.org/10.1186%2 Fs12883-015-0464-4.
- [51] DIEHL R R. Cerebral autoregulation studies in clinical practice[J]. Eur J Ultrasound, 2002, 16 (1-2): 31-36.
- [52] REINHARD M, GERDS TA, GRABIAK D, et al. Cerebral dysautoregulation and the risk of ischemic events in occlusive carotid artery disease[J]. J Neurol, 2008, 255 (8): 1182-1189.
- [53] SCHYTZ H W, HANSSON A, PHILLIP D, et al. Spontaneous low-frequency oscillations in cerebral vessels: applications in carotid artery disease and ischemic stroke[J]. J Stroke Cerebrovasc Dis, 19 (6): 465-474.
- [54] REINHARD M, ROTH M, MÜLLER T, et al. Effect of carotid endarterectomy or stenting on impairment of dynamic cerebral autoregulation[J]. Stroke, 2004, 35 (6): 1381-1387.
- [55] TELMAN G, KOUPERBERG E, NITECKI S, et al. Cerebral hemodynamics in symptomatic and asymptomatic patients with severe unilateral carotid stenosis before and after carotid endarterectomy[J]. Eur J Vasc Endovasc Surg, 2006, 32 (4): 375-378.
- [56] MENSE L, REIMANN M, RÜDIGER H, et al. Autonomic function and cerebral autoregulation in patients undergoing carotid endarterectomy[J]. Circ J, 2010, 74 (10): 2139-2145.
- [57] CLAASSEN J A, ZHANG R. Cerebral autoregulation in Alzheimer's disease[J]. J Cereb

- Blood Flow Metab, 2011, 31 (7): 1572-1577.
- [58] IADECOLA C. The pathobiology of vascular dementia[J]. Neuron, 2013, 80 (4): 844-866.
- [59] WARDLAW J M, SMITH E E, BIESSELS G J, et al. STandards for ReportIng Vascular changes on nEuroimaging (STRIVE v1). Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration[J]. Lancet Neurol, 2013, 12 (8): 822-838.
- [60] MONTINE T J, KOROSHETZ W J, BABCOCK D, et al. ADRD 2013 Conference Organizing Committee. Recommendations of the Alzheimer's disease-related dementias conference[J]. Neurology, 2014, 83 (9): 851-860.
- [61] SNYDER H M, CORRIVEAU R A, CRAFT S, et al. Vascular contributions to cognitive impairment and dementia including Alzheimer's disease[J]. Alzheimers Dement, 2015, 11 (6): 710-717.
- [62] MONTAGNE A, BARNES S R, SWEENEY M D, et al. Blood-brain barrier breakdown in the aging human hippocampus[J]. Neuron, 2015, 85 (2): 296-302.
- [63] SWEENEY M D, SAGARE A P, ZLOKOVIC B V. Cerebrospinal fluid biomarkers of neurovascular dysfunction in mild dementia and Alzheimer's disease[J]. J Cereb Blood Flow Metab, 2015, 35 (7): 1055-1068.
- [64] ARVANITAKIS Z, CAPUANO A W, LEURGANS SE, et al. Relation of cerebral vessel disease to Alzheimer's disease dementia and cognitive function in elderly people: a cross-sectional study[J]. Lancet Neurol, 2016, 15 (9): 934-943.
- [65] ITURRIA-MEDINA Y, SOTERO R C, TOUSSAINT P J, et al. Alzheimer's Disease Neuroimaging Initiative. Early role of vascular dysregulation on late-onset Alzheimer's disease based on multifactorial data-driven analysis[J/ OL]. Nat Commun, 2016, 7: 11934. https://dx.doi. org/10.1038%2Fncomms11934.
- [66] NELSON AR, SWEENEY MD, SAGARE AP, et al. Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer's disease[J]. Biochim Biophys Acta, 2016, 1862 (5): 887-900.

(收稿日期: 2019-02-11)